Loading [MathJax]/extensions/Safe.js

Class 10 Maths: Introduction to Trigonometry – Extra Questions with Answers

Q. 1 Prove the following trigonometric identity: (i) $\sin{\theta} \cos{(90^{\circ}-\theta)} + \sin{(90^{\circ}-\theta)} \cos{\theta} = 1$
Check Solution

Ans: D

Solution:
$\sin{\theta} \cos{(90^{\circ}-\theta)} + \sin{(90^{\circ}-\theta)} \cos{\theta} = \sin{\theta} \sin{\theta} + \cos{\theta} \cos{\theta} = \sin^2{\theta} + \cos^2{\theta} = 1$
Answer: 1

Q. 2 In a $\triangle ABC$, if $B = 60^\circ$, then $\tan\left(\frac{A+C}{2}\right) = $________.
Check Solution

Ans: D

Solution:
In $\triangle ABC$, we have $A + B + C = 180^\circ$.
Since $B = 60^\circ$, we get $A + C = 180^\circ – 60^\circ = 120^\circ$.
Then $\frac{A+C}{2} = \frac{120^\circ}{2} = 60^\circ$.
Therefore, $\tan\left(\frac{A+C}{2}\right) = \tan(60^\circ) = \sqrt{3}$.
Answer: $\sqrt{3}$

Q. 3 Show that: (i) $\tan 47^\circ \tan 23^\circ \tan 43^\circ \tan 67^\circ = 1$ (ii) $\cos 37^\circ \cos 53^\circ – \sin 37^\circ \sin 53^\circ = 0$
Check Solution

Ans: D

Solution:
(i) $\tan 47^\circ \tan 23^\circ \tan 43^\circ \tan 67^\circ = \tan (45^\circ + 2^\circ) \tan (45^\circ – 22^\circ) \tan (45^\circ – 2^\circ) \tan (45^\circ + 22^\circ)$
$= \tan 47^\circ \tan 43^\circ \tan 23^\circ \tan 67^\circ = \tan(45^\circ+2^\circ)\tan(45^\circ-2^\circ)\tan(45^\circ-22^\circ)\tan(45^\circ+22^\circ)$
$= \tan 47^\circ \tan (90^\circ – 47^\circ) \tan 23^\circ \tan (90^\circ – 23^\circ)$
$= \tan 47^\circ \cot 47^\circ \tan 23^\circ \cot 23^\circ$
$= (\tan 47^\circ \cdot \frac{1}{\tan 47^\circ}) (\tan 23^\circ \cdot \frac{1}{\tan 23^\circ}) = 1 \cdot 1 = 1$

(ii) $\cos 37^\circ \cos 53^\circ – \sin 37^\circ \sin 53^\circ = \cos 37^\circ \cos (90^\circ – 37^\circ) – \sin 37^\circ \sin (90^\circ – 37^\circ)$
$= \cos 37^\circ \sin 37^\circ – \sin 37^\circ \cos 37^\circ = 0$

Answer:
(i) 1
(ii) 0

Q. 4 If $\sin\theta + \cos\theta = \frac{7}{5}$, then $\sin\theta \cos\theta$ = ______.
Check Solution

Ans: C

Solution: Square both sides of the equation $\sin\theta + \cos\theta = \frac{7}{5}$ to get $(\sin\theta + \cos\theta)^2 = (\frac{7}{5})^2$. Expanding the left side gives $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{49}{25}$. Since $\sin^2\theta + \cos^2\theta = 1$, we have $1 + 2\sin\theta\cos\theta = \frac{49}{25}$. Therefore, $2\sin\theta\cos\theta = \frac{49}{25} – 1 = \frac{24}{25}$, and $\sin\theta\cos\theta = \frac{24}{50} = \frac{12}{25}$.

Answer: $\frac{12}{25}$

Q. 5 If $4 \cot B = 3$, find the value of $\frac{1 – \tan^2 B}{1 + \tan^2 B} – (\cos^2 B – \sin^2 B)$.
Check Solution

Ans: A

Solution:
Given $4 \cot B = 3$, we have $\cot B = \frac{3}{4}$. Then $\tan B = \frac{1}{\cot B} = \frac{4}{3}$.
Also, $\frac{1 – \tan^2 B}{1 + \tan^2 B} = \frac{1 – (\frac{4}{3})^2}{1 + (\frac{4}{3})^2} = \frac{1 – \frac{16}{9}}{1 + \frac{16}{9}} = \frac{-\frac{7}{9}}{\frac{25}{9}} = -\frac{7}{25}$.
Since $\cos^2 B – \sin^2 B = \cos(2B)$ and $\frac{1 – \tan^2 B}{1 + \tan^2 B} = \cos(2B)$, we have $\cos^2 B – \sin^2 B = -\frac{7}{25}$.
Therefore, $\frac{1 – \tan^2 B}{1 + \tan^2 B} – (\cos^2 B – \sin^2 B) = -\frac{7}{25} – (-\frac{7}{25}) = 0$.

Answer: 0

Q. 6 If $2\sin\alpha + 3\cos\alpha = 1$, then $3\sin\alpha – 2\cos\alpha = $ _________.
Check Solution

Ans: D

Solution:
Square both sides of $2\sin\alpha + 3\cos\alpha = 1$:
$(2\sin\alpha + 3\cos\alpha)^2 = 1^2$
$4\sin^2\alpha + 12\sin\alpha\cos\alpha + 9\cos^2\alpha = 1$ (1)
Let $x = 3\sin\alpha – 2\cos\alpha$.
Square $x$:
$x^2 = (3\sin\alpha – 2\cos\alpha)^2$
$x^2 = 9\sin^2\alpha – 12\sin\alpha\cos\alpha + 4\cos^2\alpha$ (2)
Multiply (1) by $\frac{1}{1}$ and (2) by $\frac{1}{1}$:
$(4\sin^2\alpha + 12\sin\alpha\cos\alpha + 9\cos^2\alpha) + (9\sin^2\alpha – 12\sin\alpha\cos\alpha + 4\cos^2\alpha) = 1 + x^2$
$13\sin^2\alpha + 13\cos^2\alpha = 1 + x^2$
$13(\sin^2\alpha + \cos^2\alpha) = 1 + x^2$
$13(1) = 1 + x^2$
$13 = 1 + x^2$
$x^2 = 12$
$x = \pm\sqrt{12}$
Multiply $2\sin\alpha + 3\cos\alpha = 1$ by 2 and $3\sin\alpha – 2\cos\alpha = x$ by 3:
$4\sin\alpha + 6\cos\alpha = 2$
$9\sin\alpha – 6\cos\alpha = 3x$
Adding these two equations gives:
$13\sin\alpha = 2 + 3x$
Multiply $2\sin\alpha + 3\cos\alpha = 1$ by 3 and $3\sin\alpha – 2\cos\alpha = x$ by 2:
$6\sin\alpha + 9\cos\alpha = 3$
$6\sin\alpha – 4\cos\alpha = 2x$
Subtracting the two equations gives:
$13\cos\alpha = 3 – 2x$
From $2\sin\alpha + 3\cos\alpha = 1$, we have $\sin\alpha = \frac{1 – 3\cos\alpha}{2}$.
So $x = 3(\frac{1 – 3\cos\alpha}{2}) – 2\cos\alpha = \frac{3}{2} – \frac{9}{2}\cos\alpha – 2\cos\alpha$
$x = \frac{3}{2} – \frac{13}{2}\cos\alpha$. Since $13\cos\alpha = 3 – 2x$, then $\cos\alpha = \frac{3 – 2x}{13}$.
$x = \frac{3}{2} – \frac{13}{2}(\frac{3-2x}{13}) = \frac{3}{2} – \frac{3-2x}{2} = \frac{3-3+2x}{2} = x$.
If we take the equations
$2\sin\alpha + 3\cos\alpha = 1$ and $3\sin\alpha – 2\cos\alpha = x$. Then by squaring and adding the two equations, we get
$(2\sin\alpha + 3\cos\alpha)^2 + (3\sin\alpha – 2\cos\alpha)^2 = 1^2 + x^2$
$4\sin^2\alpha + 12\sin\alpha\cos\alpha + 9\cos^2\alpha + 9\sin^2\alpha – 12\sin\alpha\cos\alpha + 4\cos^2\alpha = 1 + x^2$
$13(\sin^2\alpha + \cos^2\alpha) = 1 + x^2$
$13 = 1 + x^2$, so $x^2 = 12$, so $x = \pm 2\sqrt{3}$.
Consider $2(2\sin\alpha+3\cos\alpha) + 3(3\sin\alpha-2\cos\alpha) = 4\sin\alpha+6\cos\alpha+9\sin\alpha-6\cos\alpha = 13\sin\alpha$
$2(1) + 3x = 13\sin\alpha$
$3(2\sin\alpha+3\cos\alpha) – 2(3\sin\alpha-2\cos\alpha) = 6\sin\alpha+9\cos\alpha-6\sin\alpha+4\cos\alpha = 13\cos\alpha$
$3(1)-2x=13\cos\alpha$
$\sin^2\alpha+\cos^2\alpha = 1$
$(\frac{2+3x}{13})^2+(\frac{3-2x}{13})^2=1$
$4+12x+9x^2+9-12x+4x^2 = 169$
$13x^2+13=169$
$13x^2=156$
$x^2=12$
$x=\pm 2\sqrt{3}$
Since $2\sin\alpha+3\cos\alpha = 1$, $\sin\alpha>0$ and $\cos\alpha<0$. Then $3\sin\alpha - 2\cos\alpha>0$, so $x = 2\sqrt{3}$.

Answer: $2\sqrt{3}$

Q. 7 If $\tan 3B = \cot(B + 10^{\circ})$, where $3B$ is an acute angle, find the value of $B$.
Check Solution

Ans: D

Solution:
Since $\tan 3B = \cot(B + 10^{\circ})$, we have $\tan 3B = \tan(90^{\circ} – (B + 10^{\circ}))$. Thus, $3B = 90^{\circ} – (B + 10^{\circ})$, which implies $3B = 90^{\circ} – B – 10^{\circ}$, so $4B = 80^{\circ}$, and $B = 20^{\circ}$. Since $3B = 60^{\circ}$ is an acute angle, this solution is valid.

Answer: $20^{\circ}$

Q. 8 If $\cos B = \frac{5}{13}$, find $\sin B$ and $\cot B$.
Check Solution

Ans: B

Solution:
Since $\cos B = \frac{5}{13}$, we have a right triangle where the adjacent side is 5 and the hypotenuse is 13. Using the Pythagorean theorem, the opposite side is $\sqrt{13^2 – 5^2} = \sqrt{169-25} = \sqrt{144} = 12$.
Then, $\sin B = \frac{12}{13}$ and $\cot B = \frac{5}{12}$.
Answer: $\sin B = \frac{12}{13}, \cot B = \frac{5}{12}$

Q. 9 Prove the following identity, where the angles involved are acute angles for which the expressions are defined: $(sec \theta – tan \theta)^2 = \frac{1 – sin \theta}{1 + sin \theta}$
Check Solution

Ans: C

Solution:
$(\sec \theta – \tan \theta)^2 = \left(\frac{1}{\cos \theta} – \frac{\sin \theta}{\cos \theta}\right)^2 = \left(\frac{1 – \sin \theta}{\cos \theta}\right)^2 = \frac{(1 – \sin \theta)^2}{\cos^2 \theta} = \frac{(1 – \sin \theta)^2}{1 – \sin^2 \theta} = \frac{(1 – \sin \theta)^2}{(1 – \sin \theta)(1 + \sin \theta)} = \frac{1 – \sin \theta}{1 + \sin \theta}$
Answer: $\frac{1 – \sin \theta}{1 + \sin \theta}$

Q. 10 The value of $\log \sin 1^\circ + \log \sin 2^\circ + \log \sin 3^\circ + \dots + \log \sin 89^\circ$ is ________.
Check Solution

Ans: C

Solution:
$\log \sin 1^\circ + \log \sin 2^\circ + \log \sin 3^\circ + \dots + \log \sin 89^\circ = \log(\sin 1^\circ \sin 2^\circ \dots \sin 89^\circ)$
We know that $\sin x = \cos(90-x)$, so we can rewrite the product as:
$\sin 1^\circ \sin 2^\circ \dots \sin 44^\circ \sin 45^\circ \sin 46^\circ \dots \sin 89^\circ$
$= \sin 1^\circ \sin 2^\circ \dots \sin 44^\circ \cdot \frac{1}{\sqrt{2}} \cdot \cos 44^\circ \cos 43^\circ \dots \cos 1^\circ$
$= \frac{1}{\sqrt{2}} (\sin 1^\circ \cos 1^\circ) (\sin 2^\circ \cos 2^\circ) \dots (\sin 44^\circ \cos 44^\circ)$
$= \frac{1}{\sqrt{2}} \cdot \frac{1}{2^{44}}(\sin 2^\circ \sin 4^\circ \dots \sin 88^\circ)$
$= \frac{1}{\sqrt{2}} \frac{1}{2^{44}} (\sin 2^\circ \sin 4^\circ \dots \sin 88^\circ)$
Let $P = \sin 1^\circ \sin 2^\circ \dots \sin 89^\circ$
We have $\sin x = \sin (180-x)$ and $\sin (90-x) = \cos x$
$P = (\sin 1^\circ \sin 2^\circ \dots \sin 44^\circ) \sin 45^\circ (\sin 46^\circ \dots \sin 89^\circ)$
$P = \sin 1^\circ \sin 2^\circ \dots \sin 44^\circ \cdot \frac{1}{\sqrt{2}} \cdot \sin(90-44)^\circ \dots \sin(90-1)^\circ$
$P = \frac{1}{\sqrt{2}} \prod_{k=1}^{44} \sin k^\circ \cos k^\circ$
$P = \frac{1}{\sqrt{2}} \prod_{k=1}^{44} \frac{1}{2} \sin(2k^\circ)$
$P = \frac{1}{2^{44} \sqrt{2}} \sin 2^\circ \sin 4^\circ \dots \sin 88^\circ$
$P = \frac{1}{2^{44.5}}$
The result is $\log \frac{1}{2^{44.5}} = -44.5 \log 2$

Answer: $-44.5 \log 2$

Next Topic: Some Applications of Trigonometry

Improve Maths with LearnTheta’s AI Practice

Adaptive Practice | Real Time Insights | Resume your Progress

Try Smart Way to Practice? Yes No
πŸš€ Crack Exams with AI-Practice
AI-Practice
Γ—
Fastest Way To Crack Aptitude Tests
Sign Up
All Important Topics Availalbe for Pactice
All Important Topics Available for Practice
Personalized Questions
Personalized Questions based on your Attempts
Progress and Insight Dashboard
Progress and Insight Dashboard