Simplification: Aptitude Questions with Answers – Free Practice!

Q. 1 Simplify: \( \frac{(45)^2 – (15)^2}{30} \)
Check Solution

Ans: A

Use the identity $ a^2 – b^2 = (a – b)(a + b) $, then divide: $ \frac{30 \times 60}{30} = 60 $

Q. 2 Simplify: \( \sqrt{2025} + \sqrt{1225} – \sqrt{625} \)
Check Solution

Ans: B

All the given expressions are standard squares. You are not supposed to rememebr squares beyond 30, but if you take out 25 from each fo the expression, it becomes obvious:

Roots: $ 5 (\sqrt{81} + \sqrt{49} – \sqrt{25}) = 55 $

Q. 3 Simplify the expression: \( \frac{2}{5} + \frac{3}{10} – \frac{4}{15} \)
Check Solution

Ans: D

LCM = 30 → $ \frac{12+9-8}{30} = \frac{13}{30} $

Q. 4 Simplify: \( \frac{1}{2} \div \left( \frac{3}{4} \times \frac{2}{3} \right) \)
Check Solution

Ans: C

$ \frac{3}{4} \times \frac{2}{3} = \frac{1}{2}, \frac{1}{2} \div \frac{1}{2} = 1 $

Q. 5 Simplify: \( (3.2)^2 – (1.2)^2 \)
Check Solution

Ans: B

$ a^2 – b^2 = (4.4)(2.0) = 8.8 $

Q. 6 Simplify: \( \frac{(2 + \frac{1}{2})^2}{(1 + \frac{1}{4})} \)
Check Solution

Ans: A

$ (\frac{5}{2})^2 = \frac{25}{4}, \div \frac{5}{4} = 5 $

Q. 7 Simplify: \( \frac{3}{2} + \frac{4}{3} – \frac{5}{6} \)
Check Solution

Ans: A

Convert to common denominator → $ \frac{9 + 8 – 5}{6} = \frac{12}{6} = 2 $

Q. 8 Simplify: \( \left( \frac{5}{6} \right)^2 + \left( \frac{1}{2} \right)^2 \)
Check Solution

Ans: D

$ \frac{25}{36} + \frac{9}{36} = \frac{34}{36} = \frac{17}{18} $

Q. 9 Simplify: \( \sqrt{144} + \sqrt{121} – \sqrt{81} \)
Check Solution

Ans: C

$ \sqrt{144} = 12, \sqrt{121} = 11, \sqrt{81} = 9 → 12 + 11 – 9 = 14 $

Improve Aptitude with LearnTheta’s AI Practice

Adaptive Practice | Real Time Insights | Resume your Progress

Q. 10 Simplify: \( \frac{1}{(1 – \frac{1}{2})} + \frac{1}{(1 – \frac{1}{3})} \)
Check Solution

Ans: B

$ \frac{1}{\frac{1}{2}} + \frac{1}{\frac{2}{3}} = 2 + \frac{3}{2} = \frac{7}{2} $

Q. 11 Simplify: $\sqrt{[\frac{2.4 × 2.4)}{(1.2 × 3.6)}]^2 + 1}$
Check Solution

Ans: C

Dividing the fractions by 1.2 will give $ \sqrt{(\frac{4}{3})^2 + 1} = \sqrt{(16+9)/9} = 5/3 $

Q. 12 Simplify: $\sqrt{98} + \sqrt{8}$
Check Solution

Ans: C

$\sqrt{98} + \sqrt{8} = 7\sqrt{2} + 2\sqrt{2} = 9\sqrt{2} = \sqrt{162}$

Q. 13 (48% of 850 + 35% of 960) ÷ (0.2 × 8)
Check Solution

Ans: D

48% of 850 = 408, 35% of 960 = 336, Sum = 744; Denominator = 1.6; 744 ÷ 1.6 ≈ 465 ≈ 480

Q. 14 √784 + (56 ÷ 7) × 9 – 15² ÷ 5
Check Solution

Ans: C

√784 = 28, (56÷7)×9 = 72, 15²÷5 = 45; 28 + 72 – 45 = 90

Q. 15 $125 × 8^{2/3} ÷ 5^3$
Check Solution

Ans: A

$8^(2/3) = 4; So (125×4) ÷ 125 = 4$

Q. 16 (42² – 28²) ÷ 14
Check Solution

Ans: A

Use a²−b²=(a−b)(a+b); (42−28)(42+28)/14 = 14×70/14 = 70

Q. 17 (18.75% of 640) + (125 ÷ 25) × 3²
Check Solution

Ans: C

18.75% = 3/16; (3/16)×640=120; (125÷25)×3²=45; Total=165≈170

Next Topic Number System

Refer Thousands of Quantitative Aptitude Questions with Answers and Detailed Solutions

Practice Smart, Crack Exams – LearnTheta’s AI-Practice!

✅ All Topics at One Place

🤖 Adaptive Question Practice

📊 Progress and Insights

Leave a Comment

Your email address will not be published. Required fields are marked *

Try a better way to Practice? Yes No
Scroll to Top