Simplification: Quantitative Aptitude Questions with Answers – Free Practice!

Refer Concepts for Simplification

Q. 1 Simplify: \( \frac{(45)^2 – (15)^2}{30} \)
Check Solution

Ans: A

Use the identity $ a^2 – b^2 = (a – b)(a + b) $, then divide: $ \frac{30 \times 60}{30} = 60 $

Q. 2 Simplify: \( \sqrt{2025} + \sqrt{1225} – \sqrt{625} \)
Check Solution

Ans: B

All the given expressions are standard squares. You are not supposed to rememebr squares beyond 30, but if you take out 25 from each fo the expression, it becomes obvious:

Roots: $ 5 (\sqrt{81} + \sqrt{49} – \sqrt{25}) = 55 $

Q. 3 Simplify the expression: \( \frac{2}{5} + \frac{3}{10} – \frac{4}{15} \)
Check Solution

Ans: D

LCM = 30 → $ \frac{12+9-8}{30} = \frac{13}{30} $

Q. 4 Simplify: \( \frac{1}{2} \div \left( \frac{3}{4} \times \frac{2}{3} \right) \)
Check Solution

Ans: C

$ \frac{3}{4} \times \frac{2}{3} = \frac{1}{2}, \frac{1}{2} \div \frac{1}{2} = 1 $

Q. 5 Simplify: \( (3.2)^2 – (1.2)^2 \)
Check Solution

Ans: B

$ a^2 – b^2 = (4.4)(2.0) = 8.8 $

Q. 6 Simplify: \( \frac{(2 + \frac{1}{2})^2}{(1 + \frac{1}{4})} \)
Check Solution

Ans: A

$ (\frac{5}{2})^2 = \frac{25}{4}, \div \frac{5}{4} = 5 $

Q. 7 Simplify: \( \frac{3}{2} + \frac{4}{3} – \frac{5}{6} \)
Check Solution

Ans: A

Convert to common denominator → $ \frac{9 + 8 – 5}{6} = \frac{12}{6} = 2 $

Q. 8 Simplify: \( \left( \frac{5}{6} \right)^2 + \left( \frac{1}{2} \right)^2 \)
Check Solution

Ans: D

$ \frac{25}{36} + \frac{9}{36} = \frac{34}{36} = \frac{17}{18} $

Q. 9 Simplify: \( \sqrt{144} + \sqrt{121} – \sqrt{81} \)
Check Solution

Ans: C

$ \sqrt{144} = 12, \sqrt{121} = 11, \sqrt{81} = 9 → 12 + 11 – 9 = 14 $

Improve Aptitude with LearnTheta’s AI Practice

Adaptive Practice | Real Time Insights | Resume your Progress

Q. 10 Simplify: \( \frac{1}{(1 – \frac{1}{2})} + \frac{1}{(1 – \frac{1}{3})} \)
Check Solution

Ans: B

$ \frac{1}{\frac{1}{2}} + \frac{1}{\frac{2}{3}} = 2 + \frac{3}{2} = \frac{7}{2} $

Q. 11 Simplify: $\sqrt{[\frac{2.4 × 2.4)}{(1.2 × 3.6)}]^2 + 1}$
Check Solution

Ans: C

Dividing the fractions by 1.2 will give $ \sqrt{(\frac{4}{3})^2 + 1} = \sqrt{(16+9)/9} = 5/3 $

Q. 12 Simplify: $\sqrt{98} + \sqrt{8}$
Check Solution

Ans: C

$\sqrt{98} + \sqrt{8} = 7\sqrt{2} + 2\sqrt{2} = 9\sqrt{2} = \sqrt{162}$

Q. 13 (48% of 850 + 35% of 960) ÷ (0.2 × 8)
Check Solution

Ans: D

48% of 850 = 408, 35% of 960 = 336, Sum = 744; Denominator = 1.6; 744 ÷ 1.6 = 465

Q. 14 √784 + (56 ÷ 7) × 9 – 15² ÷ 5
Check Solution

Ans: C

√784 = 28, (56÷7)×9 = 72, 15²÷5 = 45; 28 + 72 – 45 = 55

Q. 15 $125 × 8^{2/3} ÷ 5^3$
Check Solution

Ans: A

$8^(2/3) = 4; So (125×4) ÷ 125 = 4$

Q. 16 (42² – 28²) ÷ 14
Check Solution

Ans: A

Use a²−b²=(a−b)(a+b); (42−28)(42+28)/14 = 14×70/14 = 70

Q. 17 (18.75% of 640) + (125 ÷ 25) × 3²
Check Solution

Ans: C

18.75% = 3/16; (3/16)×640=120; (125÷25)×3²=45; Total=165

Next Topic Number System

Refer Thousands of Quantitative Aptitude Questions with Answers and Detailed Solutions

Important Aptitude Qs for Comeptititve Exams
Aptitude Question Shorts
LearnTheta Adaptive Practice Demo

Crack Exams Fast & Smart with Adaptive Practice!

Placement | Banking | SSC CGL | CAT

✅ All Topics at One Place

🤖 Adaptive Question Practice

📊 Progress and Insights

Read More

Leave a Comment

Your email address will not be published. Required fields are marked *

Try a better way to Practice? Yes No
How It Works Demo Pricing Start AI-Practice
🔥 AI-Powered Practice - Prepare Faster and Smarter! ✨ Aptitude | Banking | CAT | SSC CGL | Maths | Science
Start
Scroll to Top