CAT 2023 - Slot 2 Paper (Memory Based)

Section 03: Quantitative Aptitude

Q.1) For any natural numbers m, n, and k, such that k divides both $m+2 n$ and $3 m+4 n k$ must be a common divisor of
A. m and n
B. $2 m$ and $3 n$
C. 2 m and n
D. m and $2 n$
Q.2) Any non-zero real numbers x, y such that $y \neq 3$ and $\frac{x}{y}<\frac{x+3}{y-3}$, will satisfy the condition
A. $\frac{x}{y}<\frac{y}{x}$
B. If $y>10$, then $-x>y$
C. If $x<0$, then $-x<y$
D. If $y<0$, then $-x<y$
Q.3) The sum of all possible values of x satisfying the equation $2^{4 x^{2}}-2^{2 x^{2}+x+16}+2^{2 x+30}=0$, is
A. $5 / 2$
B. $1 / 2$
C. 3
D. $3 / 2$
Q.4) Let $\mathrm{a}, \mathrm{b} \mathrm{m}$ and n be the natural numbers such that $\mathrm{a}>1$ and $\mathrm{b}>1$. If $a^{m} b^{n}=144^{145}$, then the largest possible value of n - m is
A. 579
B. 289
C. 580
D. 290
Q.5) The number of positive integers less than 50 , having exactly two distinct factors other than 1 and itself, is
Q.6) Let k be the largest integer such that the equation $(x-1)^{2}+2 k x+11=0$ has no real roots. If y is a positive real number, then the least possible value of $\frac{k}{4 y}+9 y$ is
Q.7) For some positive real number x, if $\log _{\sqrt{3}}(x)+\frac{\log _{x} 25}{\log _{x}(0.008)}=\frac{16}{3}$, then the value of $\log _{3}\left(3 x^{2}\right)$ is
Q.8) Pipes A and C are fill pipes while Pipe B is a drain pipe of a tank. Pipe B empties the full tank in one hour less than the time taken by Pipe A to fill the empty tank. When pipe A, B and C are turned on together, the tank is filled in two hours. If pipes B and C are turned on together when the tank is empty and pipe B is turned off after one hour, then pipe C takes another one hour and 15 minutes to fill the remaining tank. If the pipe A can fill the empty tank in less than five hours, then the time taken, by pipe C to fill the empty tank is
A. 75
B. 120
C. 60
D. 90
Q.9) Ravi is driving at a speed of $40 \mathrm{Km} / \mathrm{h}$ on a road. Vijay is 54 meters behind Ravi and driving in the same direction as Ravi. Ashok is driving along the same road from the opposite direction at a speed of $50 \mathrm{Km} / \mathrm{h}$ and 225 meters away from Ravi. The speed, in Km/h, at which Vijay should drive so that all the three cross each other at the same time, is
A. 67.2
B. 64.4
C. 61.6
D. 58.8
Q.10) In a company, 20% of the employees work in the manufacturing department. If the total salary obtained by all the manufacturing employees is one-sixth of the total salary obtained by all the employees in the company, then the ratio of the average salary obtained by the manufacturing employees to the average salary obtained by the non-manufacturing employees is
A. $6: 5$
B. $4: 5$
C. $5: 4$
D. $5: 6$
Q.11) Minu purchases a pair of sunglasses at Rs. 1000 and sells to Kanu at 20\% profit. Then, Kanu
sells it back to Minu at 20\% loss. Finally, Minu sells the same pair of sunglasses to Tanu. If the total profit made by Minu from all her transactions is Rs.500, then the percentage of profit made by Minu when she sold the pair of sunglasses to Tanu is
A. 26%
B. 35.42%
C. 52%
D. 31.25%
Q. 12) The price of a precious stone is directly proportional to the square of its weight. Sita has a precious stone weighing 18 units. If she breaks it into four pieces with each piece having distinct integer weight, then the difference between the highest and lowest possible values of the total price of the four pieces will be 288000 . Then, the price of the original precious stone is
A. 1620000
B. 1296000
C. 1944000
D. 972000
Q. 13) Anil borrows Rs 2 lakhs at an interest rate of 8% per annum, compounded half-yearly. He repays Rs 10320 at the end of the first year and closes the loan by paying the outstanding amount at the end of the third year. Then, the total interest, in rupees, paid over the three years is nearest to
A. 33130
B. 40991
C. 51311
D. 45311
Q.14) A container has 40 liters of milk. Then, 4 liters are removed from the container and replaced with 4 liters of water. This process of replacing 4 liters of the liquid in the container with an equal volume of water is continued repeatedly. The smallest number of times of doing this process, after which the volume of milk in the container becomes less than that of water, is
Q. 15) Jayant bought a certain number of white shirts at the rate of Rs 1000 per piece and a certain number of blue shirts at the rate of Rs 1125 per piece. For each shirt, he then set a fixed market price which was 25% higher than the average cost of all the shirts. He sold all the shirts at a discount of 10% and made a total profit of Rs 51000 . If he bought both colors of shirts, then the maximum possible total number of shirts that he could have bought is
Q. 16) If a certain amount of money is divided equally among n persons, each one receives Rs 352
. However, if two persons receive Rs 506 each and the remaining amount is divided equally among the other persons, each of them receive less than or equal to Rs 330 . Then, the maximum possible value of n is
Q. 17) In a rectangle $A B C D, A B=9 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. P and Q are two points on $B C$ such that the areas of the figures $A B P, A P Q$, and $A Q C D$ are in geometric progression. If the area of the figure $A Q C D$ is four times the area of triangle $A B P$, then $B P: P Q: Q C$ is
A. 1:1:2
B. $1: 2: 1$
C. $1: 2: 4$
D. $2: 4: 1$
Q. 18) A triangle is drawn with its vertices on the circle C such that one of its sides is a diameter of C and the other two sides have their lengths in the ratio $a: b$. If the radius of the circle is r, then the area of the triangle is
A. $\frac{2 a b r^{2}}{a^{2}+b^{2}}$
B. $\frac{a b r^{2}}{a^{2}+b^{2}}$
C. $\frac{a b r^{2}}{2\left(a^{2}+b^{2}\right)}$
D. $\frac{4 a b r^{2}}{a^{2}+b^{2}}$
Q.19) The area of the quadrilateral bounded by the Y-axis, the line $x=5$, and the lines $|x-y|-|x-5|=2$, is
Q.20) Let both the series $a_{1}, a_{2}, a_{3}, \ldots \ldots .$. and $b_{1}, b_{2}, b_{3}, \ldots \ldots .$. are in arithmetic progression such that the common differences of both the series are prime numbers. If $a_{5}=b_{9}, a_{19}=b_{19}$ and $b_{2}=0$, then a_{11} equals
A. 79
B. 83
C. 84
D. 86
Q.21) If $p^{2}+q^{2}-29=2 p q-20=52-2 p q$, then the difference between the maximum and minimum possible value of $(p-q)^{3}$ is
A. 486
B. 378
C. 243
D. 189
Q.22) Let a_{n} and b_{n} be two sequences such that $a_{n}=13+6(n-1)$ and $b_{n}=15+7(n-1)$ for all numbers n . Then, the largest three-digit integer that is common to both these sequences, is

Answer Keys

Q. No	Quant
1	D
2	D
3	B
4	A
5	15
6	6
7	7
8	D
9	C
10	B
11	D
12	B
13	C
14	7
15	407
16	16
17	D
18	A
19	45
20	A
21	B
22	967
1	

